Global Existence of Weak Solutions for a Viscous Two-phase Model

نویسندگان

  • STEINAR EVJE
  • KENNETH H. KARLSEN
  • K. H. KARLSEN
چکیده

The purpose of this paper is to explore a viscous two-phase liquid-gas model relevant for well and pipe flow. Our approach relies on applying suitable modifications of techniques previously used for studying the single-phase isothermal Navier-Stokes equations. A main issue is the introduction of a novel two-phase variant of the potential energy function needed for obtaining fundamental a priori estimates. We derive an existence result for weak solutions in a setting where transition to single-phase flow is guaranteed not to occur when the initial state is a true mixture of both phases. Some numerical examples are also included in order to demonstrate characteristic behavior of solutions. In particular, we illustrate how two-phase flow is genuinely different compared to single-phase flow concerning the behavior of an initial mass discontinuity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global weak solution to the viscous two-phase model with finite energy

In this paper, we prove the existence of global weak solutions to the compressible NavierStokes equations when the pressure law is in two variables. The method is based on the Lions argument and the Feireisl-Novotny-Petzeltova method. The main contribution of this paper is to develop a new argument for handling a nonlinear pressure law P (ρ, n) = ρ + n where ρ, n satisfy the mass equations. Thi...

متن کامل

Existence of Weak Solutions for a Non-classical Sharp Interface Model for a Two-phase Flow of Viscous, Incompressible Fluids

Abstract. We introduce a new sharp interface model for the flow of two immiscible, viscous, incompressible fluids. In contrast to classical models for two-phase flows we prescribe an evolution law for the interfaces that takes diffusional effects into account. This leads to a coupled system of Navier–Stokes and Mullins–Sekerka type parts that coincides with the asymptotic limit of a diffuse int...

متن کامل

Global Well-Posedness and Finite-Dimensional Global Attractor for a 3-D Planetary Geostrophic Viscous Model

In this paper we consider a three-dimensional planetary geostrophic viscous model of the gyre-scale mid-latitude ocean. We show the global existence and uniqueness of the weak and strong solutions to this model. Moreover, we establish the existence of a finite-dimensional global attractor to this dissipative evolution system. c © 2003 Wiley Periodicals, Inc.

متن کامل

Existence of at least three weak solutions for a quasilinear elliptic system

In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007